A. A. Kicha, A. I. Kalinovskii, and V. A. Stonik

UDC 547.925:593.793

Two new steroid glycosides have been isolated from an ethanolic extract of the starfish Crossaster papposus — crossasterosides P_1 and P_2 . On the basis of chemical transformations and spectral characteristics, the structure of crossasteroside P_1 has been established as (24R)-24-ethyl-5 α -cholestane-3 β ,6 β ,8,15 α ,16 β ,29-hexaol 29-0-[2-0-methyl- β -D-xylopyranosyl- $(1 \rightarrow 2)-\beta$ -D-galactofuranoside]. Crossasteroside P_2 is its 4 β -hydroxy analogue.

In studying the composition of the glycosidic fraction of the starfish Crossaster papposus, we have isolated two new steroid glycosides - crossasterosides P_1 (I) and P_2 (II).

The acid hydrolysis of glycoside (I) and (II) gave one and the same mixture of two monosaccharides in a ratio of 1:1. The monosaccharides were identified as galactose and 2-0-methylxylose (TLC, GLC, GLC-MS). From the specific rotation of the total monosaccharides it was established that they belonged to the D-series [1].

The dimensions of the rings of the monosaccharide residues and the configurations of the anomeric carbon atoms in the glycosides (I) and (II) were determined by a comparison of the ^{13}C NMR and PMR spectra of (I) and (II) (Tables 1 and 2) with information in the literature. The signals of the carbon atoms and of the protons of the 2-0-methyl-D-xylose unit coincided with the corresponding values for the 2-0-methyl- β -D-xylopyranose residue of echinasteroside B_2 (III) from the starfish Echinaster sepositus [2]. The CSs of C-1'-C-4' and of H-1'-H-4' and the H-1'-H-4' SSCC of the D-galactose unit were close to the corresponding values for the 2-0-substituted α -L-arabinofuranose residue of culcitoside C_1 (IV) from the starfish Culcita novaeguineae [3]. The C-4'-C-6' signals of the D-galactose residue agreed well with the same signals in the spectrum of methyl β -D-galactofuranoside (V) [4]. On the basis of these facts, the D-galactose residue was assigned the furanose form, the 2-0-methyl-D-xylose residue the pyranose form, and the glycosidic bond the β -configuration.

To establish the sequence of the monosaccharide residues in the carbohydrate chain, we acetylated glycoside (I) and obtained crossasteroside P_1 acetate (VI). As can be seen from Table 2, the O-acetyl groups in the carbohydrate moiety of (VI) were present at C-3', C-5', C-6', C-3", and C-4". It follows from this that the β -2-O-methyl-D-xylose residue was attached to C-2' of the β -D-galactofuranose residue of glycoside (I). The coincidence of the spectral characteristics of the carbohydrate chains of glycosides (I) and (II) (Tables 1 and 2) permitted the conclusion that these chains were completely identical.

The arrangement of the hydroxy groups in the aglycon of glycoside (I) was determined by spin-decoupling experiments. Starting from the characteristic H-3 multiplet (4.00 ppm) the sequence of H-4-H-7 protons was established, and starting from the H-15 signal (5.03 ppm)

Pacific Ocean Institute of Bioorganic Chemistry, Far Eastern Branch, Academy of Sciences of the USSR, Vladivostok. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 669-673, September-October, 1989. Original article submitted November 11, 1988.

TABLE 1. 13 C NMR Spectra of Glycosides (I) and (II) (C_5D_5N , δ , TMS = 0

Atom	Į	11	Atom	Ī	11
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 20	40,9 32.0 71,4 37,0 48,6 73,3 45.5 76,1 56,8 36,2 19,3 42,8 44,7 63,9 80,7 60,2 17,0 15,9 29,9	40,6 26,9 72,2 77,1 50,3 75,5 44,9a 75,7 57,1 36,2 18,7 42,6 41,7a 63,8 80,5 460,2 17,0 18,7 29,9	C 21 C 22 C 23 C 25 C 26 C 27 C 28 C 21 C 27 C 3' C 6' C 6' C 6' C 3' C 3'' C 3'' C 3'' C 3'' C 3'' C 3''	19.0a 34.2 23.4 41.8 30.5 18.6a 19.8 31.2 107.4 91.5 77.5b 83.8 72.6 64.8 104.3 84.7 77.6 60.6	19,0 34,2 28,3 41.8 30,5 18,6 19,8 31,5 107,4 91.4 77.4 83,8 72,5 64.7 104,3 84,7 77,5 70,9 66,9 69,5

a,bAssignment of the signals ambiguous.

TABLE 2. PMR Spectra of the Carbohydrate Moieties of Glycosides (I) and (II) and of the Acetate (VI) (C_5D_5N : TMS = 0; δ , ppm; J*, Hz)

Proton	1	II	. , VI
H-1' H-2' H-3' H-4' H-5' 2H-6' H-1" H-2" H-2" H-4" 2H-5" OMe	5.52 d (1.8) 4. 1 dd (1.8; 4.0) 5.11 dd (4.0; 7.8) 4.77 dd (7.8; 4.0) 4.58 td (3.8; 6.0; 6.0) 4.40 AB dd 5.68 d (7.5) 3.45 dd 4,60 t 4,20 m 4.29 dd 3,57 t 3.76 s	5,60d (1,7) 4,87dd (1,7; 4,0) 5,07dd (4,0; 7,0) 4,75dd (7,8; 4,0) 4,53td (3,3; 6,0; 6,0) 4,36 AB dd 5,03 d (7,5) 3,42dd 3,95t 4,17m 4,26dd; 3,57 t 3,75s	5,57 s 4,72 d 5,55 dd 4,76 t 5,89 m 4,65 m 4,65 m 5,55 d 3,53 dd 5,60 t 5,27 td 4,25 dd; 3,57 dd 3,70 s

^{*}Values of the splittings in multiplets. The spectra were recorded with an accuracy of 0.23 Hz/point.

ppm), the sequence of H-14, H-16, and H-17 protons (Table 3). The configurations of the substituents were determined from the SSCCs of the protons.

The structure of the aglycon of (I) was also confirmed by a comparison of the spectral characteristics of (I) (Table 3) with the spectra of (24R)-24-ethyl-5 α -cholestane-3 β ,6 α ,8,-15 α ,16 β ,29-hexaol 29-O-(α -L-arabinofuranoside) (VII) from the starfish Patiria pectinifera [5]. Thus, the CSs of the H-3, H-15, and H-16 protons and the corresponding SSCCs in the PMR spectrum of (I) were close to the corresponding signals in the spectrum of glycoside (VII). The H-6 signal (4.20 ppm) of glycoside (I) was present in the form of a narrow quartet, in contrast to the broad triplet of doublets (4.39 ppm) for H-6 of compound (VII). The H-4a signal (2.43 ppm) had shifted downfield, while the H-4e signal (2.00 ppm) has shifted upfield in comparison with the same signals (1.86 and 3.15 ppm, respectively) for (VII). These facts indicated that the substituent at C-6 had the β -configuration. Thus, the following arrangement of hydroxy groups in the steroid nucleus has been found in glycoside (I): 3β ,6 β ,8,15 α ,16 β .

TABLE 3. PMR Spectra of the Aglycon Moieties of Glycosides (I) and (II) (C_5D_5N ; TMS = 0; δ , ppm; J, Hz)

Proton	I	П
Н-3	4.00 m	3.84 dt
H-4a H-4e	2,43 q (11,2) 2,00 dm	$4.41 \mathrm{m} (\Delta \mathrm{W}_{1/2} = 7.5)$
H-5	1,40 dt	1,31t
H-6	4,20 q (2,2)	$4,4$ m ($\Delta W_{1/2} = 7,5$)
H-7a	2,10 dd (14,8; 2,7)	2.02 dd (14.5; 3.0)
H-7e	3,25 dd (15,0; 3,0)	3,19 dd (14,5; 2,8)
H-14	1.57 d (10,5)	$[1.51 \ d_{\odot}(10.5)]$
H-15	5,03 dd (10,5; 2,5)	4.99 ad (10.5; 2,7)
H-16	4,73 dd (7,5; 2,3)	4,70 dd (7,5; 2,5)
CH ₃ -18	1,75 s 1,60 s	1,70 s
CH₃-19 CH₃-21	1,15 d (6,5)	1,86s 1,12d (6,5)
CH ₃ -25	0,80 d (6,7)	0.80 d (6.6)
CH 3-27	0.82 d (6.7)	0.82 d (6.7)
H-29	4,00 m	3.96 m
H-29'	3,53 m	3,57 m

According to its ¹³C NMR spectrum, the aglycon of compound (I) contained 29 carbon atoms (Table 1). The signals in the ¹³C NMR spectrum of (I) at (ppm) 29.9 (C-20); 19.0 (C-21); 34.2 (C-22); 28.3 (C-23); 41.8 (C-24); 30.5 (C-25); 18.6 (C-26); 19.8 (C-27); 31.5 (C-28); 67.3 (C-29) practically coincided with the signals of the side chain of glycoside (VII). From this, we concluded that glycoside (I) had a stigmastane skeleton, and the carbohydrate chain was attached to C-29 of the aglycon.

The R-configuration of C-20 in (I) was determined from the CS of the CH_3 -21 protons (0.94 ppm) in the PMR spectrum (CD₃OD) [6].

According to information in the literature [7], for 29-hydroxyclionasterol (24R) (VII) and 29-hydroxysitosterol (24S) (IX), in the case of the (24R)-configuration the difference in the CSs of the $\rm CH_3$ -26 and $\rm CH_3$ -27 protons amounts to 0.3 ppm, while in the case of the (24S)-configuration the doublets of these methyl groups are superposed. Furthermore, it has been shown for (24R)- and (24S)-24-ethyl-5 α -cholest-7-ene-3 β ,29-diols (Xa and Xb) that in the case of the (24R)-configuration the C-26 and C-27 signals in the ¹³C NMR spectrum differ by 1 ppm, while for the (24S)-isomer they coincide [7]. For glycoside (I), the difference between the signal of the CH₃-26 and CH₃-27 protons amounted to 0.02 ppm (Table 3), and that between the signals of the carbon atoms to 1.2 ppm (Table 1). On this basis we assumed that the C-24 asymmetric center in (I) had the R-configuration.

By using expedients analogous to those described above, we also determined the structure of the aglycon of glycoside (II). Spectral information for it is given in Tables 1 and 3. It was established that, in comparison with glycoside (I), compound (II) had an additional hydroxy group at C-4. In actual fact, a comparison of the sections of the ^{13}C NMR and PMR spectra of (II) relating to the A/B rings with the corresponding sections of the spectra of echinasteroside B₂ (III) [2] revealed the presence in (II) and (III) of an identical 3\$\beta\$,4\$\beta\$,6\$\beta\$-trihydroxy fragment.

Thus, the structure of crossasteroside P_1 has been established as (24R)-24-ethyl-5 α -cholestane-3 β ,6 β ,8,15 α ,16 β ,29-hexaol 29-O-[O-(2-O-methyl- β -D-xylopyranosyl)-(1 \rightarrow 2)- β -D-galactofuranoside]. Crossasteroside P_2 is its 4 β -hydroxy analogue. This is the first time that galactose has been found in polyhydroxysteroid glycosides.

EXPERIMENTAL

For general observations, see [8]. The animals were collected in August, 1983, in the Sea of Okhotsk in the littoral of the island of Onekotan (Kurile Islands) from a depth of 100 m.

<u>Isolation of Crossasterosides P_1 and P_2 .</u> A mixture of crossasterosides P_1 and P_2 not separable by column chromatography was obtained from the total fraction of polyhydroxysteroids of \underline{C} . papposus by a method described previously [9]. Acetylation of the mixture with acetic anhydride in pyridine (1:1) led to the combined acetates. The combined acetates of

the glycosides (150 mg) were chromatographed on columns of silica gel in the hexane—ethyl acetate (1:1) system and of Florisil in the hexane—ethyl acetate (18:10) system. This gave 78 mg of crossasteroside P_1 acetate and 51 mg of crossasteroside P_2 acetate.

By saponifying the acetates with a 3% solution of sodium methanolate and separating the products by column chromatography on Polychrome-1 in the ethanol-water (from 0:100 to 50:50) system and on silica gel in the chloroform-ethanol-water (300:100:to saturation) system we obtained 39 mg of crossasteroside P_1 (0.0017% of the lyophilizate of the ethanolic extract and 24 mg of crossasteroside P_2 (0.0011% of the lyophilizate of the ethanolic extract).

Crossasteroside P_1 (I), $C_{41}H_{72}O_{15}$, amorphous, $[\alpha]_{Hg}$ -12.9° (c 1.13; methanol). Crossasteroside P_2 (II), $C_{41}H_{72}O_{16}$, amorphous, $[\alpha]_{Hg}$ -14.0° (c 1.00; methanol).

Hydrolysis of Crossasterosides P_1 and P_2 . The acid hydrolysis of (I) and (II) was carried out with 2N HCl at 100°C for 2 h. D-Galactose and 2-0-methyl-D-xylose were identified by the methods of TLC on silica gel and Silufol in the butanol—acetone—water (4:5:1) system and by GLC and GLC-MS of the corresponding aldononitrile acetates. The total monosaccharides from (I) had $[\alpha]_{Hg}$ +22.0° (c 0.05; water), and those from (II) $[\alpha]_{Hg}$ +24.0° (c 0.05; water). The values calculated from the literature [1] for the sum of β -D-galactose and 2-0-methyl-D-xylose (1:1) is $[\alpha]_D$ +30.3° (water), and for the sum of α -L-galactose and 2-0-methyl-D-xylose (1:1) $[\alpha]_D$ -143.9° (water).

SUMMARY

Two new steroid glycosides have been isolated from <u>Crossaster papposus</u> and characterized: (24R)-24-ethyl-5 α -cholestane-3 β ,6 β ,8,15 α ,16 β ,19-hexaol 29-0-[0-(2-0-methyl- β -D-xylopyranosyl)-(1 \rightarrow 2)- β -D-galactofuranoside] - crossasteroside P₁ - and its 4 β -hydroxy analogue - crossasteroside P₂.

LITERATURE CITED

- 1. F. Micheel and A. Klemer, Chemie der zucker und Polysaccharide, Academische Verlagsgesellschaft, Geest und Portig, Leipzig (1956), pp. 400, 435.
- 2. É. V. Levina, A. I. Kalinovskii, P. V. Andriyashchenko, and A. A. Kicha, Khim. Prir. Soedin., No. 2, 246 (1987).
- 3. A. A. Kicha, A. I. Kalinovskii, E. V. Levina, and P. V. Andriyashchenko, Khim. Prir. Soedin., No. 6, 801 (1985).
- 4. R. G. S. Ritchie, N. Cyr. B. Korsch, H. J. Koch, and A. S. Perlin, Can. J. Chem., <u>53</u>, 1424 (1975).
- 5. A. A. Kicha, A. I. Kalinovskii, E. V. Levina, Ya. V. Rashkes, V. A. Stonik, and G. B. Elyakov, Khim. Prir. Soedin., No. 3, 356 (1985).
- 6. D. J. Vanderah and C. Djerassi, J. Org. Chem., <u>43</u>, No. 7, 1442 (1978).
- 7. R. Riccio, M. V. D'Auria, M. Iorizzi, L. Minale, D. Laurent, and D. Duhet, Gazz. Chim. Ital., <u>115</u>, No. 8, 405 (1985).
- 8. A. A. Kicha, A. I. Kalinovskii, and É. V. Levina, Khim. Prir. Soedin., No. 6, 738 (1984).
- 9. A. A. Kicha, A. I. Kalinovsky [Kalinovskii], E. V. Levina, V. A. Stonik, and G. B. Elyakov, Tetrahedron Lett., 24, No. 36, 3893 (1983).